Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Normal-state dielectric and transport properties of in-doped Bi-Pb-Sr-Ca-Cu-O

Identifieur interne : 00EE08 ( Main/Repository ); précédent : 00EE07; suivant : 00EE09

Normal-state dielectric and transport properties of in-doped Bi-Pb-Sr-Ca-Cu-O

Auteurs : RBID : Pascal:02-0454552

Descripteurs français

English descriptors

Abstract

The effect of indium doping on the normal-state transport and dielectric properties of the Bi1.84Pb0.34Sr1.91Ca2.03Cu3.06InxOy (0 ≤ x ≤ 0.15) has been investigated. The dielectric constant, loss tangent, carrier concentration and electrical resistivity were measured at room temperature as a function of indium concentration. The dielectric constant is found to increase with increasing dopant concentration possibly due to increase in polarization. Impurities in any crystalline lattice generally cause deformation of the surrounding volume and modification in the local fields. The loss tangent of the indium doped-system decreased with increasing dopant concentration. Decrease in the loss tangent with increase in the dopant concentration indicates the decrease in the dielectric losses in the sample during doping. The carrier concentration is found to decrease with increasing indium concentration. This could be due to charge imbalance, which leads to a decrease in the number of holes in the system. Consequently, the electrical resistivity at 50°C increased with the dopant concentration. Also, above x = 0.05 dopant concentration there was a rapid rise in electrical resistivity, possibly due to disorder in the Cu-O2 planes. The temperature dependence of the electrical resistivity above room temperature is consistent with metallic behavior.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:02-0454552

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Normal-state dielectric and transport properties of in-doped Bi-Pb-Sr-Ca-Cu-O</title>
<author>
<name sortKey="Nkum, R K" uniqKey="Nkum R">R. K. Nkum</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Kwame Nkrumah University of Science and Technology</s1>
<s2>Kumasi</s2>
<s3>GHA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Ghana</country>
<wicri:noRegion>Kumasi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gyekye, M O" uniqKey="Gyekye M">M. O. Gyekye</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Kwame Nkrumah University of Science and Technology</s1>
<s2>Kumasi</s2>
<s3>GHA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Ghana</country>
<wicri:noRegion>Kumasi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Boakye, F" uniqKey="Boakye F">F. Boakye</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Kwame Nkrumah University of Science and Technology</s1>
<s2>Kumasi</s2>
<s3>GHA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Ghana</country>
<wicri:noRegion>Kumasi</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">02-0454552</idno>
<date when="2002">2002</date>
<idno type="stanalyst">PASCAL 02-0454552 INIST</idno>
<idno type="RBID">Pascal:02-0454552</idno>
<idno type="wicri:Area/Main/Corpus">00E929</idno>
<idno type="wicri:Area/Main/Repository">00EE08</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0038-1098</idno>
<title level="j" type="abbreviated">Solid state commun.</title>
<title level="j" type="main">Solid state communications</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bismuth oxides</term>
<term>Calcium oxides</term>
<term>Carrier density</term>
<term>Copper oxides</term>
<term>Dielectric losses</term>
<term>Dielectric properties</term>
<term>Doping</term>
<term>Electrical conductivity</term>
<term>High-Tc superconductors</term>
<term>Impurities</term>
<term>Impurity density</term>
<term>Indium oxides</term>
<term>Lattice distortion</term>
<term>Lead oxides</term>
<term>Permittivity</term>
<term>Polarization</term>
<term>Strontium oxides</term>
<term>Temperature dependence</term>
<term>Transport processes</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété diélectrique</term>
<term>Phénomène transport</term>
<term>Dopage</term>
<term>Constante diélectrique</term>
<term>Perte diélectrique</term>
<term>Densité porteur charge</term>
<term>Conductivité électrique</term>
<term>Dépendance température</term>
<term>Concentration impureté</term>
<term>Polarisation</term>
<term>Impureté</term>
<term>Distorsion réseau</term>
<term>Supraconducteur haute température</term>
<term>Bismuth oxyde</term>
<term>Plomb oxyde</term>
<term>Calcium oxyde</term>
<term>Cuivre oxyde</term>
<term>Indium oxyde</term>
<term>Strontium oxyde</term>
<term>Bi1.84Pb0.34Sr1.91Ca2.03Cu3.06InxOy</term>
<term>Bi Ca Cu In O Pb Sr</term>
<term>7722</term>
<term>7472H</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The effect of indium doping on the normal-state transport and dielectric properties of the Bi
<sub>1.84</sub>
Pb
<sub>0.34</sub>
Sr
<sub>1.91</sub>
Ca
<sub>2.03</sub>
Cu
<sub>3.06</sub>
In
<sub>x</sub>
O
<sub>y</sub>
(0 ≤ x ≤ 0.15) has been investigated. The dielectric constant, loss tangent, carrier concentration and electrical resistivity were measured at room temperature as a function of indium concentration. The dielectric constant is found to increase with increasing dopant concentration possibly due to increase in polarization. Impurities in any crystalline lattice generally cause deformation of the surrounding volume and modification in the local fields. The loss tangent of the indium doped-system decreased with increasing dopant concentration. Decrease in the loss tangent with increase in the dopant concentration indicates the decrease in the dielectric losses in the sample during doping. The carrier concentration is found to decrease with increasing indium concentration. This could be due to charge imbalance, which leads to a decrease in the number of holes in the system. Consequently, the electrical resistivity at 50°C increased with the dopant concentration. Also, above x = 0.05 dopant concentration there was a rapid rise in electrical resistivity, possibly due to disorder in the Cu-O
<sub>2</sub>
planes. The temperature dependence of the electrical resistivity above room temperature is consistent with metallic behavior.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0038-1098</s0>
</fA01>
<fA02 i1="01">
<s0>SSCOA4</s0>
</fA02>
<fA03 i2="1">
<s0>Solid state commun.</s0>
</fA03>
<fA05>
<s2>122</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Normal-state dielectric and transport properties of in-doped Bi-Pb-Sr-Ca-Cu-O</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>NKUM (R. K.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GYEKYE (M. O.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BOAKYE (F.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, Kwame Nkrumah University of Science and Technology</s1>
<s2>Kumasi</s2>
<s3>GHA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>569-573</s1>
</fA20>
<fA21>
<s1>2002</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10917</s2>
<s5>354000101762960120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2002 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>18 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>02-0454552</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solid state communications</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The effect of indium doping on the normal-state transport and dielectric properties of the Bi
<sub>1.84</sub>
Pb
<sub>0.34</sub>
Sr
<sub>1.91</sub>
Ca
<sub>2.03</sub>
Cu
<sub>3.06</sub>
In
<sub>x</sub>
O
<sub>y</sub>
(0 ≤ x ≤ 0.15) has been investigated. The dielectric constant, loss tangent, carrier concentration and electrical resistivity were measured at room temperature as a function of indium concentration. The dielectric constant is found to increase with increasing dopant concentration possibly due to increase in polarization. Impurities in any crystalline lattice generally cause deformation of the surrounding volume and modification in the local fields. The loss tangent of the indium doped-system decreased with increasing dopant concentration. Decrease in the loss tangent with increase in the dopant concentration indicates the decrease in the dielectric losses in the sample during doping. The carrier concentration is found to decrease with increasing indium concentration. This could be due to charge imbalance, which leads to a decrease in the number of holes in the system. Consequently, the electrical resistivity at 50°C increased with the dopant concentration. Also, above x = 0.05 dopant concentration there was a rapid rise in electrical resistivity, possibly due to disorder in the Cu-O
<sub>2</sub>
planes. The temperature dependence of the electrical resistivity above room temperature is consistent with metallic behavior.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70G22</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70D72H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Propriété diélectrique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Dielectric properties</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Phénomène transport</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Transport processes</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Doping</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Doping</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Constante diélectrique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Permittivity</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Perte diélectrique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Dielectric losses</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Carrier density</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Concentration impureté</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Impurity density</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Concentración impureza</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Polarisation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Polarization</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Impureté</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Impurities</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Distorsion réseau</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Lattice distortion</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Distorsión red</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Supraconducteur haute température</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>High-Tc superconductors</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Bismuth oxyde</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Bismuth oxides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Plomb oxyde</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Lead oxides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Calcium oxyde</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Calcium oxides</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Cuivre oxyde</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Copper oxides</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Indium oxyde</s0>
<s2>NK</s2>
<s5>20</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Indium oxides</s0>
<s2>NK</s2>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Strontium oxyde</s0>
<s2>NK</s2>
<s5>21</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Strontium oxides</s0>
<s2>NK</s2>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Bi1.84Pb0.34Sr1.91Ca2.03Cu3.06InxOy</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Bi Ca Cu In O Pb Sr</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>7722</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>7472H</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fN21>
<s1>266</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00EE08 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00EE08 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:02-0454552
   |texte=   Normal-state dielectric and transport properties of in-doped Bi-Pb-Sr-Ca-Cu-O
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024